Prompt Engineering CheatSheet for ChatGPT

๐Ÿค– Prompt Engineering Cheatsheet

1. ๐Ÿ”‘ Basic Principles

  • ๐ŸŽฏ Be Specific: Clearly define the ๐Ÿ—๏ธ task & ๐Ÿ“Œ expectations.
  • ๐Ÿ“ Use Constraints: Limit โœ๏ธ responses by ๐Ÿ“ length, ๐Ÿ“ format, or ๐ŸŽจ style.
  • ๐Ÿ“œ Provide Context: Give ๐Ÿ›๏ธ background โ„น๏ธ for ๐Ÿ” better results.
  • ๐Ÿ“ Use Examples: Guide ๐Ÿค– with a ๐ŸŽฏ few-shot approach.
  • ๐Ÿ”„ Iterate & ๐Ÿ› ๏ธ Refine: Modify ๐Ÿ”ค prompts based on ๐Ÿ“Š output quality.

2. ๐Ÿ’ก Prompting Techniques

1๏ธโƒฃ Zero-Shot Prompting

Without ๐Ÿ—๏ธ examples, the ๐Ÿค– relies only on ๐Ÿง  pre-trained knowledge.

Example:

“๐Ÿ“– Explain Newtonโ€™s Third Law in ๐Ÿค simple words.”


2๏ธโƒฃ One-Shot Prompting

Provides 1๏ธโƒฃ example to ๐Ÿงญ guide the ๐Ÿค–.

Example:

“๐Ÿ” Translate โ€˜Helloโ€™ to ๐Ÿ‡ซ๐Ÿ‡ท French. ๐Ÿ“ Answer: Bonjour. Now translate โ€˜Goodbyeโ€™ to ๐Ÿ‡ซ๐Ÿ‡ท French.”


3๏ธโƒฃ Few-Shot Prompting

Uses ๐Ÿ”ข examples for ๐ŸŽฏ accuracy.

Example:

“๐Ÿ—ฃ๏ธ Translate:

  • โ€˜Helloโ€™ โ†’ โ€˜Bonjourโ€™
  • โ€˜Goodbyeโ€™ โ†’ โ€˜Au revoirโ€™
  • โ€˜Thank youโ€™ โ†’ ?”

Response: “Merci.”


4๏ธโƒฃ Chain-of-Thought (CoT) Prompting

Encourages ๐Ÿ—๏ธ step-by-step ๐Ÿค” reasoning.

Example:

“๐Ÿš† A train moves at โฉ 60 km/h for โณ 2.5 hours. How far does it travel? ๐Ÿ“ Explain step by step.”

Response:

Step 1๏ธโƒฃ: Speed = 60 km/h
Step 2๏ธโƒฃ: Time = 2.5 โณ
Step 3๏ธโƒฃ: Distance = ๐ŸŽ๏ธ Speed ร— โณ Time = 60 ร— 2.5 = 150 km.


5๏ธโƒฃ Instruction-Based Prompting

Directly instructs ๐Ÿค– with ๐Ÿ“œ clear guidelines.

Example:

“๐Ÿ“ Summarize this ๐Ÿ“„ article in 3๏ธโƒฃ bullet points.”


6๏ธโƒฃ Role-Based Prompting

Assigns ๐Ÿค– a ๐ŸŽญ persona for ๐ŸŽฏ understanding.

Example:

“๐Ÿ•ฐ๏ธ You are a ๐Ÿ“œ historian. Explain the ๐Ÿ“– impact of the ๐Ÿ›๏ธ Chola dynasty in ๐Ÿ‡ฎ๐Ÿ‡ณ South India.”


7๏ธโƒฃ Delimiter Prompting

Keeps ๐Ÿค– focused by using ๐Ÿ“ delimiters.

Example:

“๐Ÿ“– Summarize the following text between triple quotes:
”’โšก The mitochondria is the powerhouse of the cell…”'”


3. ๐Ÿš€ Advanced Prompting Techniques

1๏ธโƒฃ Prompt Chaining

Breaks down ๐Ÿ“ complex tasks into ๐Ÿ”— sequential prompts.

Example:
1๏ธโƒฃ Generate an ๐Ÿ“‹ outline for an โœ๏ธ essay. 2๏ธโƒฃ Expand each ๐Ÿ“Œ section into ๐Ÿ“„ paragraphs. 3๏ธโƒฃ Refine ๐Ÿ“œ grammar & โœจ style.


2๏ธโƒฃ Self-Consistency

Runs ๐Ÿ” multiple variations of a ๐Ÿ”ค prompt & picks ๐ŸŽฏ best output.

Example:

“๐Ÿงฎ Solve 27 ร— 43. ๐Ÿ“– Explain your reasoning.”
(AI ๐Ÿ—๏ธ runs multiple ๐Ÿ—๏ธ approaches & ๐Ÿ† picks the most ๐Ÿ“Š consistent result.)


3๏ธโƒฃ Retrieval-Augmented Generation (RAG)

Fetches relevant ๐Ÿ”Ž external ๐Ÿ“œ data before generating a ๐Ÿ—๏ธ response.

Example:

“๐Ÿ“ฐ Summarize the ๐Ÿ”ฌ latest ๐Ÿ“š research on โš›๏ธ quantum computing using external sources.”


4. โŒ Common Issues & โœ… Fixes

โš ๏ธ Issue๐Ÿ› ๏ธ Fix
๐Ÿค– gives vague answersUse ๐ŸŽฏ specific instructions & constraints
โœ๏ธ Response is too longSpecify ๐Ÿ“ word/character limit
๐Ÿค– misunderstands contextProvide ๐Ÿ›๏ธ clear background โ„น๏ธ
โšก Output lacks depthUse ๐Ÿ”— chain-of-thought or ๐ŸŽญ role-based prompts
๐Ÿšจ Hallucinated factsUse ๐Ÿ“œ RAG-based or ๐Ÿ•ต๏ธ fact-checking prompts

5. ๐Ÿ’ผ Applications of Prompt Engineering

  • ๐Ÿค– Chatbots & Assistants โ€“ Personalized AI ๐Ÿ’ฌ interactions.
  • โœ๏ธ Content Creation โ€“ Blogs, ๐Ÿ“„ articles, & ๐ŸŽญ creative writing.
  • ๐ŸŽ“ Education โ€“ AI ๐Ÿ“– tutors, explanations, & summaries.
  • ๐Ÿ’ป Coding โ€“ Generating & ๐Ÿ› ๏ธ debugging ๐Ÿ’พ code.
  • ๐Ÿ“Š Data Analysis โ€“ Summarizing ๐Ÿ“„ reports & extracting insights.

By mastering these techniques, you can create ๐Ÿš€ highly effective prompts for AI-driven tasks & ๐ŸŽฏ maximize the ๐Ÿ“ˆ accuracy of AI-generated outputs. ๐Ÿค–โœจ