๐ค Prompt Engineering Cheatsheet
1. ๐ Basic Principles
- ๐ฏ Be Specific: Clearly define the ๐๏ธ task & ๐ expectations.
- ๐ Use Constraints: Limit โ๏ธ responses by ๐ length, ๐ format, or ๐จ style.
- ๐ Provide Context: Give ๐๏ธ background โน๏ธ for ๐ better results.
- ๐ Use Examples: Guide ๐ค with a ๐ฏ few-shot approach.
- ๐ Iterate & ๐ ๏ธ Refine: Modify ๐ค prompts based on ๐ output quality.
2. ๐ก Prompting Techniques
1๏ธโฃ Zero-Shot Prompting
Without ๐๏ธ examples, the ๐ค relies only on ๐ง pre-trained knowledge.
Example:
“๐ Explain Newtonโs Third Law in ๐ค simple words.”
2๏ธโฃ One-Shot Prompting
Provides 1๏ธโฃ example to ๐งญ guide the ๐ค.
Example:
“๐ Translate โHelloโ to ๐ซ๐ท French. ๐ Answer: Bonjour. Now translate โGoodbyeโ to ๐ซ๐ท French.”
3๏ธโฃ Few-Shot Prompting
Uses ๐ข examples for ๐ฏ accuracy.
Example:
“๐ฃ๏ธ Translate:
- โHelloโ โ โBonjourโ
- โGoodbyeโ โ โAu revoirโ
- โThank youโ โ ?”
Response: “Merci.”
4๏ธโฃ Chain-of-Thought (CoT) Prompting
Encourages ๐๏ธ step-by-step ๐ค reasoning.
Example:
“๐ A train moves at โฉ 60 km/h for โณ 2.5 hours. How far does it travel? ๐ Explain step by step.”
Response:
Step 1๏ธโฃ: Speed = 60 km/h
Step 2๏ธโฃ: Time = 2.5 โณ
Step 3๏ธโฃ: Distance = ๐๏ธ Speed ร โณ Time = 60 ร 2.5 = 150 km.
5๏ธโฃ Instruction-Based Prompting
Directly instructs ๐ค with ๐ clear guidelines.
Example:
“๐ Summarize this ๐ article in 3๏ธโฃ bullet points.”
6๏ธโฃ Role-Based Prompting
Assigns ๐ค a ๐ญ persona for ๐ฏ understanding.
Example:
“๐ฐ๏ธ You are a ๐ historian. Explain the ๐ impact of the ๐๏ธ Chola dynasty in ๐ฎ๐ณ South India.”
7๏ธโฃ Delimiter Prompting
Keeps ๐ค focused by using ๐ delimiters.
Example:
“๐ Summarize the following text between triple quotes:
”’โก The mitochondria is the powerhouse of the cell…”'”
3. ๐ Advanced Prompting Techniques
1๏ธโฃ Prompt Chaining
Breaks down ๐ complex tasks into ๐ sequential prompts.
Example:
1๏ธโฃ Generate an ๐ outline for an โ๏ธ essay. 2๏ธโฃ Expand each ๐ section into ๐ paragraphs. 3๏ธโฃ Refine ๐ grammar & โจ style.
2๏ธโฃ Self-Consistency
Runs ๐ multiple variations of a ๐ค prompt & picks ๐ฏ best output.
Example:
“๐งฎ Solve 27 ร 43. ๐ Explain your reasoning.”
(AI ๐๏ธ runs multiple ๐๏ธ approaches & ๐ picks the most ๐ consistent result.)
3๏ธโฃ Retrieval-Augmented Generation (RAG)
Fetches relevant ๐ external ๐ data before generating a ๐๏ธ response.
Example:
“๐ฐ Summarize the ๐ฌ latest ๐ research on โ๏ธ quantum computing using external sources.”
4. โ Common Issues & โ Fixes
โ ๏ธ Issue | ๐ ๏ธ Fix |
---|---|
๐ค gives vague answers | Use ๐ฏ specific instructions & constraints |
โ๏ธ Response is too long | Specify ๐ word/character limit |
๐ค misunderstands context | Provide ๐๏ธ clear background โน๏ธ |
โก Output lacks depth | Use ๐ chain-of-thought or ๐ญ role-based prompts |
๐จ Hallucinated facts | Use ๐ RAG-based or ๐ต๏ธ fact-checking prompts |
5. ๐ผ Applications of Prompt Engineering
- ๐ค Chatbots & Assistants โ Personalized AI ๐ฌ interactions.
- โ๏ธ Content Creation โ Blogs, ๐ articles, & ๐ญ creative writing.
- ๐ Education โ AI ๐ tutors, explanations, & summaries.
- ๐ป Coding โ Generating & ๐ ๏ธ debugging ๐พ code.
- ๐ Data Analysis โ Summarizing ๐ reports & extracting insights.
By mastering these techniques, you can create ๐ highly effective prompts for AI-driven tasks & ๐ฏ maximize the ๐ accuracy of AI-generated outputs. ๐คโจ