Integration by substitution method

To integrate the function \int \frac{dx}{\sin(x) \cos^3(x)}, we can use a substitution method. Let’s solve it step by step:

1. Let’s use the substitution:

    \[ u = \cos(x) \]

    \[ \implies du = -\sin(x) \, dx \]

2. Rewriting the integral in terms of u:

    \[ \int \frac{dx}{\sin(x) \cos^3(x)} = \int \frac{-du}{u^3} \]

3. Now, integrate:

    \[ \int \frac{-du}{u^3} = \int -u^{-3} \, du \]

    \[ = \frac{u^{-2}}{-2} + C \]

    \[ = \frac{-1}{2u^2} + C \]

4. Substituting back for x:

    \[ = \frac{-1}{2\cos^2(x)} + C \]

So, the integral of \frac{dx}{\sin(x) \cos^3(x)} is:

    \[ \frac{-1}{2\cos^2(x)} + C \]

Answer

    \[\int \frac{dx}{\sin(x) \cos^3(x)} = \frac{-1}{2\cos^2(x)} + C\]