

Magnetic Field due to a Current Carrying Conductor

1. Biot-Savart Law:

- This law helps to calculate the magnetic field produced at a point due to a small element of current-carrying conductor.
- The formula is: $d{f B}=rac{\mu_0}{4\pi}rac{Id{f l} imes\hat{f r}}{r^2}$
- Here, $d\mathbf{B}$ is the infinitesimal magnetic field, μ_0 is the permeability of free space, I is the current, $d\mathbf{l}$ is the length element, and $\hat{\mathbf{r}}$ is the unit vector from the element to the point where the field is calculated.

2. Magnetic Field Due to a Long Straight Conductor:

• Using the Biot-Savart Law, the magnetic field at a distance r from a long straight conductor is: $B = \frac{\mu_0 I}{2\pi r}$

3. Magnetic Field on the Axis of a Circular Loop:

• For a loop of radius R and current I, the magnetic field at the center is: $B = \frac{\mu_0 I}{2R}$

Force on a Current Carrying Conductor in a Magnetic Field

1. Lorentz Force Law:

- A conductor carrying current I in a magnetic field ${f B}$ experiences a force given by: ${f F}=I({f l} imes {f B})$
- \circ Here, l is the length vector of the conductor.

2. Force Between Two Parallel Current-Carrying Conductors:

- Two parallel conductors carrying currents I_1 and I_2 separated by a distance d exert a force on each other: $F=rac{\mu_0I_1I_2l}{2\pi d}$
- If currents are in the same direction, the force is attractive; if opposite, the force is repulsive.

Force on a Charge in an Electric and Magnetic Field

1. Lorentz Force:

• The total force on a charge q moving with velocity ${f v}$ in an electric field ${f E}$ and magnetic field ${f B}$ is: ${f F}=q({f E}+{f v} imes{f B})$

2. Motion of Charged Particle in a Uniform Magnetic Field:

- A charged particle moving perpendicular to a uniform magnetic field follows a circular path with radius r: $r = \frac{mv}{qB}$
- The angular frequency (cyclotron frequency) is: $\omega = \frac{qB}{m}$

Ampere's Circuital Law

1. Statement:

- Ampere's Law relates the integrated magnetic field around a closed loop to the electric current passing through the loop: $\oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 I_{\text{enc}}$
- $\circ\;$ Here, $I_{
 m enc}$ is the current enclosed by the loop.

2. Applications:

- **Solenoid**: The magnetic field inside a long solenoid is uniform and given by: $B = \mu_0 nI$ • Here, n is the number of turns per unit length.
- **Toroid**: The magnetic field inside a toroid is: $B = rac{\mu_0 NI}{2\pi r}$
 - Here, N is the total number of turns and r is the radius of the toroid.

Magnetic Dipole Moment of Revolving Electron

```
1. Magnetic Dipole Moment (\mu):
```

- $\circ~$ The magnetic dipole moment of a current loop is given by: $\mu=IA$
- $\circ~$ For an electron orbiting a nucleus, the magnetic dipole moment is: $\mu=rac{e}{2m}L$
- Here, e is the electron charge, m is the electron mass, and L is the orbital angular momentum.

2. Bohr Magneton:

• The Bohr magneton is the quantum of the magnetic dipole moment: $\mu_B = \frac{e\hbar}{2m_e}$

Additional Resources

- Video Lectures:
 - Force on current carrying conductor in a magnetic field
 - Lorentz force
- Quizzes:
 - Ampere's circuital law