Refraction of Light

1) Refraction through a rectangular slab

2) Laws of refraction

- The incident ray, the refracted ray and the normal - all lie in the same plane
- Snell's law of refractive index

$$
\frac{\sin i}{\sin r}=\mu
$$

Saitech Informatics, IIT-Coaching from STD 9 to 12 I Chennai - Kolathur, Mylapore I Ph: 044-25508163

$$
\begin{aligned}
& \mu_{21}=\frac{\text { speed of light in medium } 1}{\text { peed of light in medium } 2}=\frac{v_{1}}{v_{2}} \\
& \mu_{12}=\frac{\text { speed of light in medium } 2}{\text { peed of light in medium } 1}=\frac{v_{2}}{v_{1}}
\end{aligned}
$$

3) Absolute refractive index $\left(\mu_{m}\right)$

When the first medium is air or vacuum and the refractive index of the second medium is called absolute refractive index of the medium.

$$
\mu_{m}=\frac{\text { speed of light in air }}{\text { peed of light in medium }}=\frac{c}{v}
$$

Air: 1.003; Water: 1.33; Fused quartz: 1.47; Crown glass: 1.52; Ruby: 1.71; Diamond: 2.42

Image formation in convex and concave lenses

(b)

Ray Diagrams of convex and concave lenses

1. Ray travelling from infinity and passing through
a. convex lens
b. concave lens

www.saitechinfo.com

Saitech Informatics, IIT-Coaching from STD 9 to 12 I Chennai - Kolathur, Mylapore I Ph: 044-25508163

(a)

(b)
2. Ray passing through principal focus (F)
a. In a convex lens
b. In a concave lens

3. Ray passing through optic centre (O)
a. In a convex lens
b. In a concave lens

Image formation in a convex lens based on various positions
a) From infinity; b) Beyond 2 F 1 ; c) At 2F1; d) Between 2 F 1 and F 1 ; e) At F 1 ; f) Between F 1 and O

www.saitechinfo.com

Saitech Informatics, IIT-Coaching from STD 9 to 12 I Chennai - Kolathur, Mylapore I Ph: 044-25508163

Image formation in a concave lens based on various positions
a) From infinity; b) Between 2F1 and O

(a)

(b)

www.saitechinfo.com

Saitech Informatics, IIT-Coaching from STD 9 to 12 I Chennai - Kolathur, Mylapore I Ph: 044-25508163

Power of Lens

- It is the reciprocal of focal length.

$$
D=\frac{1}{f}
$$

- Represented by the unit Dioptre (D)
- $1 \mathrm{D}=1 \mathrm{~m}^{-1}$
- Dis positive for convex lens
- D is negative for concave lens

Mirror formula
$\frac{1}{v}-\frac{1}{u}=\frac{1}{f}$

Magnification

$$
m=\frac{h^{\prime}}{h}=-\frac{v}{u} \bigcirc
$$

