Conditionat
Probloalbition
,

Conditional Probability

A card is drawn in favour of a well shuffled pack of 52 cards at random. Find the probability of getting an ace when it is given that card drawn was black card.
n (E) to get on $\operatorname{ACe}(4)$
nEE) to get black $(2 b)$

$$
\begin{aligned}
& n(S)=52 \\
& P(E)=\frac{n(E)}{n(S)}
\end{aligned}
$$

$$
P(E)=\frac{4}{52} ; P(F)=\frac{26}{52}
$$

$$
\begin{aligned}
& n(E \cap F)=2 \\
& \left.P(E \cap F)=\frac{2}{52} \right\rvert\, P(E \mid F)=\frac{P(E \cap F)}{P(F)} \\
&=\frac{2 / 52}{26 / 52}=\frac{1}{13} \text { Ans }
\end{aligned}
$$

A pair of dice is thrown. Find the probability of getting a doublet if its known that sum of the numbers of the two dice is 10
(E)

$$
\begin{align*}
& (E)=\{(1,1),(2,2),(3,3),(4,4), E \\
& n(E)=b \\
& \begin{array}{l}
(F)=\{(4,6),(5,5),(6,4)\} \begin{array}{l}
P(E \mid F)=\frac{P(E \cap F)}{P(F)} \\
P(E \mid F)=1 / 36
\end{array} \\
n(F)=3
\end{array} \\
& n(F)=3 \\
& P(E)=\frac{6}{36} \\
& P(F)=\frac{3}{36} \\
& P(E \cap F)=\frac{1}{36} \quad P(E \mid F)=1 / 3 \\
& 1,2,3,4,5,6,2,3,4,5,6 \\
& P(F I F)=\frac{1 / 36}{3 / 36} \\
& \text { A } \\
& \text { Ans }
\end{align*}
$$

If E and F are two events of the same sample space of an experiment and $P(A)=$ $9 / 20, \mathrm{P}(\mathrm{B})=8 / 15$ and $\mathrm{P}(\mathrm{AUB})=47 / 60$, find the following.

$$
\begin{aligned}
& \text { i) } P(A \mid B) \text {, ii) } P(B \mid A) \text {, iii) } P\left(A^{\prime} \mid B\right) \text {, iv) } P\left(B^{\prime} \mid A^{\prime}\right) \\
& P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
& P(A \cap B)=P(A)+P(B)-P(A \cup B) \\
& =\frac{9}{20}+\frac{8}{15}-\frac{47}{60} \\
& =\frac{27+32-47}{60}=\frac{59-47}{60} \\
& P(A \cap B)=\frac{12}{60}=\frac{1}{5} \\
& \text { (i) } \begin{aligned}
& P(A \mid B) \\
&= \frac{P(A \cap B)}{P(B)} \\
&= \frac{1 / 5}{8 / 15} \\
&= \frac{1}{8} \times \frac{15}{8}=3 / 8 \\
& 3(A) \\
& \frac{P(A \cap B)}{P(A)}=\frac{1 / 5}{9 / 20} \\
& \frac{P}{9}=\frac{4}{9} / /
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{P\left(A^{\prime} \mid B\right)}{}=1-P(A \mid B)=1-\frac{2}{8}=\frac{8-3}{8}=\frac{5 / 8}{1-P(A)} \\
& \mid P\left(A^{\prime} \mid A^{\prime}\right)=\frac{P(A \cup B)^{\prime}}{P(A \cup B)}+P(A \cup B)^{\prime} \\
&=1 \\
&=\frac{1-P(A \cup B)}{1-P(A)}=\frac{1-\frac{47}{60}}{1-9 / 20}=\frac{13 / 60}{11 / 20} \\
&=\frac{13 \times \frac{20}{66}=\frac{13}{33}}{P(A \cup B)}=P(A)+P(B)=\frac{\text { Ans }}{P(A \cap B)}
\end{aligned}
$$

